Последние новости
19 июн 2021, 22:57
Представитель политического блока экс-президента Армении Сержа Саргсяна "Честь имею" Сос...
Поиск

11 фев 2021, 10:23
Выпуск информационной программы Белокалитвинская Панорама от 11 февраля 2021 года...
09 фев 2021, 10:18
Выпуск информационной программы Белокалитвинская Панорама от 9 февраля 2021 года...
04 фев 2021, 10:11
Выпуск информационной программы Белокалитвинская Панорама от 4 февраля 2021 года...
02 фев 2021, 10:04
Выпуск информационной программы Белокалитвинская Панорама от 2 февраля 2021 года...
Главная » Библиотека » Рефераты » Рефераты по физике » Реферат: Устройство электронного микроскопа

Реферат: Устройство электронного микроскопа

Реферат: Устройство электронного микроскопа Как же устроен электронный микроскоп? В чём его отличие от оптического микроскопа, существует ли между ними какая-нибудь аналогия?

В основе работы электронного микроскопа (общий вид его приведён на рис. 3) лежит свойство неоднородных электрических и магнитных полей, обладающих вращательной симметрией, оказывать на электронные пучки фокусирующее действие. Таким образом, роль линз в электронном микроскопе играет совокупность соответствующим образом рассчитанных электрических и магнитных полей; соответствующие устройства, создающие эти поля, называют "электронными линзами". В зависимости от вида электронных линз электронные микроскопы делятся на магнитные, электростатические и комбинированные.
[sms]Какого же типа объекты могут быть исследованы с помощью электронного микроскопа? Так же как и в случае оптического микроскопа объекты, во-первых, могут быть "самосветящимися", т. е. служить источником электронов. Это, например, накаленный катод или освещаемый фотоэлектронный катод. Во-вторых, могут быть использованы объекты, "прозрачные" для электронов, обладающих определённой скоростью. Иными словами, при работе на просвет объекты должны быть достаточно тонкими, а электроны достаточно быстрыми, чтобы они проходили сквозь объекты и поступали в систему электронных линз. Кроме того, путём использования отражённых электронных лучей могут быть изучены поверхности массивных объектов (в основном металлов и металлизированных образцов). Такой способ наблюдения аналогичен методам отражательной оптической микроскопии.

По характеру исследования объектов электронные микроскопы разделяют на просвечивающие, отражательные, эмиссионные, растровые, теневые и зеркальные.

Наиболее распространёнными в настоящее время являются электромагнитные микроскопы просвечивающего типа, в которых изображение создаётся электронами, проходящими сквозь объект наблюдения. Устройство такого микроскопа показано на рис. 4 (слева для сравнения показано устройство оптического микроскопа). Он состоит из следующих основных узлов: осветительной системы, камеры объекта, фокусирующей системы и блока регистрации конечного изображения, состоящего из фотокамеры и флуоресцирующего экрана. Все эти узлы соединены друг с другом, образуя так называемую колонну микроскопа, внутри которой поддерживается давление ~ 10­ -4 ѕ 10­ -5 мм рт. ст. Осветительная система обычно состоит из трёхэлектродной электронной пушки (катод, фокусирующий электрод, анод) и конденсорной линзы (здесь и далее речь идёт об электронных линзах). Она формирует пучок быстрых электронов нужного сечения и интенсивности и направляет его на исследуемый объект, находящийся в камере объектов. Пучок электронов, прошедший сквозь объект, поступает в фокусирующую (проекционную) систему, состоящую из объективной линзы и одной или нескольких проекционных линз.

Объективная линза предназначена для получения увеличенного электронного изображения (обычно увеличение~ 100*). Часто это увеличенное изображение называют промежуточным. Для его наблюдения в плоскости изображений объективной линзы располагают специальный экран. Этот экран, покрытый люминесцирующим веществом (люминофором), аналогичен экрану в кинескопах, превращает электронное изображение в видимое.

Часть электронов из числа попадающих на экран необходимо направлять в проекционную линзу для формирования конечного электронного изображения; с этой целью в центре экрана сделано круглое отверстие. Поток электронов, прошедших сквозь отверстие, перед поступлением в проекционную линзу диафрагмируется. В более сложных микроскопах используются две электронные линзы. В этих случаях первую из линз называют промежуточной; она формирует второе промежуточное изображение. Вторая же проекционная линза формирует конечное электронное изображение, которое фиксируется в блоке регистрации. Результат электронно-микроскопического исследования может быть получен либо в виде распределения плотностей почернения фотографической пластинки, либо в виде распределения яркостей свечения люминесцентного экрана.

Образование изображения в просвечивающем электронном микроскопе связано главным образом с различной степенью рассеяния электронов различными участками исследуемого образца и в меньшей мере с различием в поглощении электронов этими участками. В зависимости от степени рассеяния электронов участками образца через так называемую апертурную диафрагму, помещённую перед объективной линзой, проходит большее или меньшее число электронов (диафрагма пропускает лишь те электроны, углы рассеяния которых не очень велики). Контрастность получаемого изображения определяется отношением числа прошедших через диафрагму электронов к общему числу электронов, рассеянных данным микроучастком образца.

Максимальное увеличение такого микроскопа определяется величинами фокусных расстояний объективной и проекционной линз и расстоянием между объектом наблюдения и плоскостью конечного изображения. Для просвечивающего микроскопа с одной проекционной линзой эта зависимость выражается следующей простой формулой:

M=L­ 2/(4* f1* f2),

где L ѕ расстояние между объектом и плоскостью изображения; f1 и f2 ѕ соответственно фокусные расстояния объективной и проекционной линз.

Из формулы видно, что для достижения больших увеличений целесообразно использовать короткофокусные линзы и располагать их на большом расстоянии друг от друга, что соответствует большому значению величины L. Заметим, что в этом отношении электронный микроскоп аналогичен оптическому.

Реально в современных электронных микроскопах L не превышает 1ѕ 2 м, а величины f1 и f2 составляют порядка 1,5 ѕ 2 мм. Нетрудно подсчитать, что в этом случае Mмакс=20000ё 40000. Однако для электронного микроскопа есть смысл добиваться дальнейшего повышения увеличения ещё на порядок, поскольку максимальное полезное увеличение его, определяемое отношением разрешающей способности человеческого глаза (~ 0,2 мм) на расстоянии наилучшего зрения к разрешающей способности электронного микроскопа, составляет порядка 400000.

Хотя, как мы видели, теоретическая разрешающая способность в электронной микроскопии, ограничиваемая дифракционным пределом, при использовании ускоряющего напряжения порядка 100 кв составляет 0,037А° , реально достижимое разрешение в силу ряда причин, о которых речь пойдёт ниже, оказывается существенно меньше этой величины. В современных электронных микроскопах гарантируемое разрешение составляет 4,5 ѕ 5,0А° . Величина максимального полезного увеличения (400 000*) соответствует разрешающей способности в 5,0А° . Для достижения столь большого увеличения в электронных микроскопах обычно используются промежуточные линзы небольшого увеличения.

Объекты электронной микроскопии

Теперь посмотрим, какие объекты можем мы наблюдать и исследовать с помощью, обладающего разрешающей способностью порядка нескольких ангстрем, т. е. порядка 10­ -10 м. Очень немного говорит эта цифра, так как число с десятью нулями представить не очень просто. Почему эту величину следует считать малой и даже сверхмалой? По сравнению с чем? В старом учебнике физики Цингера была фраза, смысл которой сводился к следующему: "Если портной ошибётся в длине вашего платья на один сантиметр, вы вряд ли это заметите, но если наборщик сместит буквы на один сантиметр ѕ это каждый сразу заметит". Величина 10­ -10 м очень малая, если её сравнивать с размерами предметов в нашей комнате. Это также очень малая величина по сравнению с размерами тех вещей, тех объектов, которые мы можем взять руками, можем потрогать. Все эти предметы состоят из громадного числа атомов и молекул. Величина же 10­ -10 м сравнима с размерами отдельных атомов и молекул. Таким образом, научившись видеть и общаться с такими величинами, мы приобретаем возможность "работать" с отдельными атомами и молекулами вещества или по крайней мере с объектами, в которых не очень много атомов. Современные электронные микроскопы позволяют наблюдать и изучать большие органические молекулы.

Итак, совершив "прорыв" в средствах наблюдения в область размеров порядка 10­ -9ё 10­ -10 м, мы по сравнению с метром ѕ величиной, сравнимой с длиной шага, совершаем скачок в миллиарды (10­ 9) раз. Обратим внимание, что расстояние от Земли до окраинных объектов Солнечной системы ~ 6e9 км, которое свет(его скорость 300000 км/сек) проходит примерно за 6 ч, по сравнению с линейными размерами города (~ 10 км), оказывается больше в 6e8 раз.

Но хорошо, что же можно узнать нового, проникнув в область сверх малых размеров, открываемых электронной микроскопией? Не представляет ли собой этот мир атомов и молекул нечто, в котором отсутствуют не только краски и звуки, но и вообще какие-либо признаки разнообразия, жизни и красоты? Оказывается не нужно даже обладать богатым воображением, чтобы увидеть своеобразную красоту мира сверх малых объектов и увлечься ею. Посмотрите на рис. 5, и вы в этом убедитесь.

На уровне размеров, разрешаемой современной электронной микроскопией, разворачиваются события, играющие в конечном итоге исключительно важную роль в жизни человека, природе и технике. Прежде всего биология. Живые клетки представляют собой сложные структурные образования; в них протекают сложнейшие, изученные лишь частично биохимические процессы. Ход этих процессов определяет жизнедеятельность клеток, их взаимосвязь и в конечном итоге жизнедеятельность организмов.

В этом мире нашему взору открываются ранее не известные нам населяющие его "жители", их действия и привычки, взаимоотношения между собой, их дружба и маленькие трагедии, которые в конечном итоге приводят к событиям, играющим важнейшую роль в масштабах природы и человечества. Здесь на молекулярном уровне хранится величайшая тайна ѕ тайна жизни, ее вечного воспроизведения и совершенствования. Здесь же спрятаны такие факторы, как причины болезней и смерти, либо прерывающие жизнь, либо делающие ее трагической; вирусы многих грозных болезней "легких", таких, как грипп, и страшных - таких, как чума; сложные молекулярные структуры ѕ молекулы ДНК, РНК, хранящие вековечный код жизни, воспроизводящие и осуществляющие эту жизнь, ѕ принадлежат к этому миру.

Многие свойства материалов, являющихся основой современной техники и использующихся в повседневной жизни человека и общества в целом, определяются свойствами микроструктур вещества, также относящихся к этому миру.

Таким образом, мир, который открывают нам методы электронной микроскопии, не только многообразен и по своему красочен, но и играет чрезвычайно важную роль в жизни природы и человечества.

Виды электронных микроскопов

Многообразие явлений, требующих изучения при помощи электронной микроскопии, определяет разнообразие и специфику ее методов и соответствующих устройств. Мы уже знакомы с принципом действия просвечивающего электронного микроскопа. С его помощью можно исследовать тонкие образцы, пропускающие падающий на них пучок электронов.

В ряде случаев и в первую очередь для исследования массивных объектов применяются электронные микроскопы других типов.

Эмиссионный электронный микроскоп формирует изображение с помощью электронов, испускаемых самим объектом. Такое испускание достигается путем нагревания объекта (термоэлектронная эмиссия), освещения его (фотоэлектронная эмиссия), бомбардировки электронами или ионами (вторичная электронная эмиссия), а также помещением его в сильное электрическое поле (автоэлектронная эмиссия). Увеличенное изображение формируется подобно тому, как это делается в микроскопе просвечивающего типа. Образование изображения в эмиссионном электронном микроскопе происходит в основном за счет различного испускания электронов микроучастками объекта. При эмиссионных исследованиях объектов разрешающая способность микроскопов составляет ~ 300А° .

Эмиссионная электронная микроскопия нашла широкое применение в исследованиях и разработках катодов электровакуумных приборов различного, в том числе радиолокационного применения, а также в физических исследованиях металлов и полупроводников.

В отражательном электронном микроскопе изображение создается с помощью электронов, отраженных (рассеянных) поверхностным слоем объекта. Образование изображения в нем обусловлено различием рассеяния электронов в разных точках объекта в зависимости от материала и микрорельефа. Обычно образцы получаются под малым углом (приблизительно несколько градусов) к поверхности. Практически на электронных микроскопах такого типа достигнуто разрешение порядка 100 ангстрем.

Одна из особенностей отражательного электронного микроскопа - различие увеличений в различных направления вдоль плоскости объекта связано с наклонным положением объекта по отношению к оптической оси микроскопа. Поэтому увеличение такого микроскопа характеризуют обычно двумя величинами: увеличением в плоскости падения пучка электронов и увеличением в плоскости, перпендикулярной плоскости падения.

Растровый электронный микроскоп основан на использовании предварительно сформированного тонкого электронного луча (зонда), положением которого управляют с помощью электромагнитных полей. Это управление (сканирование) во многом аналогично процессу развертки в телевизионных кинескопах. Электронный зонд последовательно проходит по поверхности исследуемого образца. Под воздействием электронов пучка происходит ряд процессов, характерных для данного материала и его структуры. К их числу относятся рассеяние первичных электронов, испускание (эмиссия) вторичных электронов, появление электронов, прошедших сквозь объект (в случае тонких объектов), возникновение рентгеновского излучения. В ряде специальных случаев (люминесцирующие материалы, полупроводники) возникает также световое излучение. Регистрация электронов, выходящих из объекта, а также других видов излучения (рентгеновского, светового) дает информацию о различных свойствах микроучастков изучаемого объекта. Соответственно этому системы индикации и другие элементы растровых микроскопов различаются в зависимости от вида регистрируемого излучения.

Синхронно с разверткой электронного зонда осуществляется развертка луча большого кинескопа. Рассмотрим работу растрового электронного микроскопа в режиме индикации тока вторичных электронов. В этом случае величина вторичного электронного тока определяет глубину модуляции яркости на экране кинескопа. Растровый электронный микроскоп такого типа позволяет получить увеличение 100 ё 100 000 при достаточной контрастности изображения. Разрешающая способность растровых электронных микроскопов определяется диаметром электронного зонда и в случае получения изображения в электронных лучах составляет ~ 300А° . Растровые электронные микроскопы позволяют изучать, например, так называемые p-n переходы в полупроводниках.

Из электронных микроскопов упомянем зеркальный электронный микроскоп, основной особенностью которого является чувствительность к микроскопическим электрическим и магнитным полям на отражающем массивном объекте. При этом достигается разрешение деталей порядка 1000А° и увеличение почти в 2000*. Работа такого микроскопа основана на действии микроскопических электрических и магнитных полей на электронный поток. Зеркальный электронный микроскоп позволяет изучать, например, доменную структуру ферромагнитных материалов, структуру сегнетоэлектриков.

В теневом электронном микроскопе, так же как и в растровом, формируется электронный зонд, однако положение его остается неизменным. Электронные лучи зонда служат для получения увеличенного теневого изображения объекта, помещенного в непосредственной близости от зонда. Образование изображения обусловлено рассеянием и поглощением электронов различными участками объекта. Следует отметить, что интенсивность конечного изображения в теневом электронном микроскопе незначительна, поэтому обычно в них используются усилители света типа электронно-оптических преобразователей.

Важной разновидностью электронных микроскопов растрового типа является микрорентгеноспектральный анализатор. Прибор основан на возбуждении так называемого характеристического рентгеновского излучения атомов малого участка поверхности - образца с помощью тонкого высокоскоростного электронного зонда. Электронный зонд с помощью системы развертки обегает исследуемую поверхность. При торможении электронов на поверхности возникает наряду с так называемым тормозным излучением характеристическое рентгеновское излучение, свойства которого существенно определяются строением электронных оболочек в атомах вещества. Это излучение обязано своим возникновением энергетическим переходом между глубокими энергетическими уровнями атомов.

Возникающее характеристическое излучение регистрируется с помощью рентгеноспектральной аппаратуры. Диаметр электронного зонда может изменяться от 360 до 0,5 мкм, а размер просматриваемой площадки представляет собой квадрат со стороной 360, 180, 90 или 45 мкм. В одном из приборов такого типа скорость анализа по одному химическому элементу соответствует движению зонда 8 или 96 мкм/мин (при механическом перемещении объекта). Анализировать можно все элементы периодической системы элементов Менделеева, легких (от атомного номера 11 - натрия).минимальный объем вещества, поддающегося количественному анализу, составляет 0,1 мкг. С помощью микрорентгеновского анализатора получают распределение физико-химического состава вдоль исследуемой поверхности.

В СССР серийно выпускается (выпускался) микрорентгеновский анализатор типа МАР-1 (диаметр зонда около 1 мкм, наименьшая анализируемая площадь 1мкм­ 2). Приборы такого вида находят применение в электронной промышленности и в других областях науки и техники.

Читатель, видимо, обратил внимание на тот факт, что в электронных микроскопах не достигается разрешающая способность, предсказываемая теорией. В чем же дело? Вспомним, что в формировании изображения в электронных микроскопах важную роль играют элементы электронной оптики, позволяющие осуществлять управление электронными пучками. Этим элементам - электронным линзам свойственны различного рода отклонения от идеального (требуемого расчетом) распределения электрических и магнитных полей. Положение здесь во многом аналогично ограничениям в оптической микроскопии, связанным с неточностью изготовления оптических линз, зеркал и других элементов. Кроме того, ряд трудностей связан с особенностями изготовления и работы источников электронных потоков (катодов), а также с проблемой создания потоков, в которых электроны мало отличаются по скоростям. В соответствии с этими фактами, действующими в реальных условиях, различают определённые виды искажений в электронных микроскопах, используя при этом терминологию, заимствованную из световой оптики.

Основными видами искажений электронных линз в просвечивающих микроскопах являются сферическая и хроматическая аберрации, а также дифракция и приосевой астигматизм. Не останавливаясь на происхождении различных видов искажений, связанных с нарушениями симметрии полей и взаимным расположением элементов электронной оптики, упомянем лишь о хроматической аберрации. Последний вид искажений аналогичен возникновению окрашенных изображений в простых биноклях и лупах. Использование спектрально чистого монохроматического света в оптике (вместо белого) устраняет этот вид искажений. Аналогично этому в электронной микроскопии используют по возможности пучки электронов, скорости которых отличаются мало (вспомним соотношение l =h/(m* v) для электрона!). Этого достигают применением высокостабильных источников электрического питания.

Близким "родственником" электронного микроскопа является электронограф ѕ прибор, использующий явление дифракции электронов, той самой дифракции, которая в своё время подтвердила наличие волновых свойств у электронов и ставит в наши дни предел разрешения в электронном микроскопе. В случае электронов объектами, в которых может происходить дифракция на периодической структуре (аналогичной объёмной дифракционной решётке в оптике), служат кристаллические структуры. Известно, что в кристаллах атомы расположены в строгом геометрическом порядке на расстояниях порядка единиц ангстрем. Особенно правильно это расположение в так называемых монокристаллах. При взаимодействии электронов с такими структурами возникает рассеяние электронов в преимущественных направлениях в соответствии с предсказываемыми теорией соотношениями. Регистрируя рассеянные электроны (например, фотографируя их), можно получать информацию об атомной структуре вещества. В современных условиях электронография широко применяется при исследованиях не только твёрдых, но и жидких, газообразных тел. О виде получаемых электронограмм можно судить по фотографиям (см. рис.6).

В нашей стране и за рубежом применяются специализированные электронографы промышленного типа. Кроме того, в некоторых электронных микроскопах предусмотрена возможность работы в режиме электронографии.

Следует заметить, что с точки зрения физики получение электронограмм представляет собой процесс, во многом близкий процессу получению рентгенограмм в рентгеноструктурном анализе. Действительно, если в электрографии используется дифракция электронов, то в рентгеноструктурном анализе происходит дифракция рентгеновских лучей на атомных структурах. Естественно, что каждый из этих методов имеет свою область применения.

Особенности работы с электронным микроскопом

Остановимся кратко на основных приемах работы в электронной микроскопии. Естественно, что эти приемы своеобразны, учитывая сверхмалые размеры объектов, подлежащих исследованию. Так, например, в биологических исследованиях находят применения "сверхтонкие ножи" - микротомы, позволяющие получать срезы биологических объектов толщиной менее 1 мкм.

Главные особенности методики электронной микроскопии определяются необходимостью помещения объекта исследования внутрь колонны электронного микроскопа, т.е. в вакуум и обеспечения условий высокой чистоты, так как малейшие загрязнения могут существенно исказить результаты. Для просвечивающего электронного микроскопа объект приготовляется в виде тонких пленок, в качестве которых могут служить различного рода лаки, пленки металлов и полупроводников, ультратонкие срезы биологических препаратов. Кроме того, объектами исследования могут быть тонко измельченные (диспергированные) совокупности частиц. Обычно в просвечивающих микроскопах, работающих при напряжениях 50-100 кв, толщина объектов не может превышать 200 А° (для неорганических веществ) и 1000 А° (для органических). Биологические объекты в большинстве случаев приходится контрастировать, т.е. "окрашивать" (солями тяжелых металлов), оттенять напылением металлов (платиной, палладием и др.) и использовать ряд других приемов. Необходимость контрастирования вызвана тем, что большинство биологических объектов содержит атомы легких элементов (с малым атомным номером) - водород, углерод, азот, кислород, фосфор и т.д. в то же время толщина объектов, интересных для биологии и медицины, составляет величину порядка 50 А° . Без контрастирования при электронно-микроскопических исследованиях вирусов наблюдаются бесструктурные пятна, а отдельные молекулы нуклеиновых кислот вообще неразличимы. Использование методов контрастирования позволяет эффективно применить электронную микроскопию в биологических исследованиях и в том числе при исследованиях больших молекул (макромолекул).

В ряде случаев при исследовании, например, массивных объектов в технике широкое применение находит метод получения отпечатков, который заключается в изготовлении и последующем исследовании в микроскопе копий поверхностей объектов.

Используются как естественные отпечатки (тонкие слои окислов), так и искусственные, получаемые путем нанесения (напыления, осаждения) пленок кварца, углерода и других веществ. Наибольшее разрешение ( ~ 10 А° ) позволяют получить угольные реплики, которые находят широкое применение как в технике, так и в биологии.

При наблюдении электронно-микроскопическими методами влажных объектов ( в том числе живых клеток) используются вакуумно-изолированные газовые микрокамеры. Объекты исследования помещаются в электронных микроскопах на тончайшие пленки - подложки, которые крепятся на специальных сетках, изготовляемых обычно из меди электролитическим способом. Эти пленки должны удовлетворять целому ряду требований, поскольку относительно большая толщина их, а также сильное рассеяние ими электронов приводят к резкому ухудшению качества изображения объекта. Кроме того, материал таких пленок должен обладать хорошей теплопроводностью и высокой стойкостью к электронной бомбардировке.

Кстати, об электронной бомбардировке объекта исследования и ее последствиях. При попадании электронов на объект они выделяют энергию, примерно равную кинетической энергии их движения. В результате могут происходить местный разогрев и разрушение участков объекта.

Электронный микроскоп часто используется для микрохимического анализа исследуемого вещества согласно методу, предложенному М. И. Земляновой и Ю. М. Кушниром. По существу этот метод аналогичен методу микрохимического анализа с помощью оптического микроскопа. В данном случае электронный микроскоп используется в качестве устройства, способного обнаружить малые количества искомого вещества (по форме и структуре кристаллов и т.п.). на поверхность водного раствора, в котором предполагается наличие искомых ионов, наносится капля 1 - 1,5% раствора нитроклетчатки в амилацетате. Капля растекается по поверхности жидкости и образует коллодиевую пленку, на которую наносится капля реагента. Ионы реагента проникают (диффундируют) сквозь пленку и, взаимодействуя с раствором, образуют на поверхности пленки кристаллы, которые содержат ионы, подлежащие обнаружению. После специальной очистки кусочек пленки с кристалликами помещается в электронный микроскоп, и на основе изучения этих кристалликов оказывается возможным дать ответ о наличии искомых ионов, а в ряде случаев - и об их концентрации. Такой метод микрохимического анализа характеризуется высокой чувствительностью (на 2 - 3 порядка большей по сравнению с другими способами). Например, ионы марганца могут быть обнаружены в растворе с концентрацией не ниже 10­ -11 нормального раствора при содержании иона 10­ -11 г (по данным А. М. Решетникова).

Пути преодоления дифракционного предела электронной микроскопии.

К настоящему времени электронная микроскопия достигла больших успехов и нашла многочисленные применения. Однако в ряде случаев, о которых кратко было сказано выше, было бы чрезвычайно желательным добиться дальнейшего прогресса в электронной микроскопии. Это в первую очередь относится к проблеме достижения большей разрешающей способности.

На пути решения этой краеугольной задачи стоят чрезвычайно серьезные технические трудности, связанные с проблемами создания электронных линз, их взаимного расположения формирования односкоростных электронных потоков. Совокупность этих факторов приводит в конечном итоге к различного рода искажениям, играющим важную роль при больших увеличениях и приводящим к тому, что практически достигаемое разрешение оказывается хуже предельного.

По мере приближения электронной микроскопии к своим предельным возможностям все труднее и труднее становится вносить в нее дальнейшие усовершенствования.

Самые последние достижения в электронной микроскопии основаны на применении новых высоковольтных (V = 100 кв) и сверхвысоковакуумных (вакуум 2e-10 мм рт. ст.) приборов. Высоковольтная электронная микроскопия, как показывает опыт, позволяет уменьшить хроматическую аберрацию электронных линз. В печати сообщается, например, о том, что с помощью нового японского микроскопа SMH-5 могут быть получены фотографии решеток с межплоскостным расстоянием ~ 1 А° . Сообщается также, что на новом электронном микроскопе с ускоряющим напряжением 750 кв получено разрешение, равное 3 А° .

Рассматриваются возможности применения в электронной микроскопии линз из сверхпроводящих сплавов (например, Hi ѕ Zn), которые позволят получить высокие оптические свойства электронных систем и исключительную стабильность полей. Ожидается, что использование специальных линз-фильтров позволит получить новые результаты в отражательной электронной микроскопии. При использовании таких линз в просвечивающем электронном микроскопе удалось существенно улучшить их разрешающую способность.

В растровых электронных микроскопах просвечивающего типа к настоящему времени достигнута разрешающая способность в 100 А° . Новый эмиссионный микроскоп позволяет получать разрешения деталей с размерами от 120 (для фотоэмиссии) до 270 А° (для вторичной эмиссии).

Вызывает интерес сообщение о том, что голландская фирма Philips вносит ряд усовершенствований в микроскоп типа EM-300, которые позволят довести практическую разрешающую способность до теоретического предела (!). Правда, о существе этих усовершенствований пока не сообщается.

Важность проблемы улучшения разрешающей способности в электронной микроскопии, приближение ее к теоретическому пределу стимулировала проведение целого ряда исследований в этой области. Из многочисленных предложений и идей, зачастую остроумных и весьма перспективных, остановимся на идеях, высказанных английским физиком Габором, получивших в последние годы широкое развитие в оптике, радиофизике, акустике, особенно в связи с созданием оптических квантовых генераторов (лазеров). Речь идет о так называемой голографии, о которой известно сейчас не только специалистам, но и всем тем, кто интересуется новейшими достижениями физики. Вместе с тем не все, наверное, знают, что первые работы Габора по голографии, проведенные еще в "долазерный" период (1948-1951), были поставлены и выполнены именно в связи с задачей повышения разрешающей способности в электронной микроскопии.

Сущность предлагавшегося метода сводилась к следующему. Монохроматический поток электронов, т.е. поток, содержащий электроны с одинаковыми скоростями, освещает объект исследования (по схеме просвечивающего или теневого микроскопа). При этом происходит дифракция электронов на объекте (вспомним волновые свойства электронов!). Обычно в электронном микроскопе пучок, претерпевший дифракцию на объекте, поступает в систему электронных линз, формирующих изображение и обеспечивающих нужное большое увеличение. Однако эти же линзы, как мы уже отмечали, являются источниками трудно устранимых искажений, препятствующих достижению теоретического разрешения. В новом методе предлагалось фиксировать результат дифракции электронов фотографически в виде дифракционной картины и подвергать эту картину последующей обработке с помощью оптических методов, где получение нужных усилений может быть достигнуто с меньшими искажениями. В таком двухступенчатом процессе получения изображений основное увеличение достигается за счет перехода от "электронных" длин волн к оптическим. При этом следует отметить, что обрабатываемая оптическими методами картина дифракции практически не имеет сходства с объектом исследования. Однако с помощью светового излучения (видимого) по этой картине в несложном оптическом устройстве можно восстановить изображение исследуемого объекта. Для этого источник излучения должен посылать монохроматические когерентные волны, т.е. должен обладать теми свойствами, которые так ярко проявляются у оптических квантовых генераторов.

Заметим, что, образно говоря, в этом двухступенчатом процессе мы фиксируем, "замораживаем" фронт электронных волн и потом воспроизводим его вновь в виде фронта световой волны в значительно большем масштабе, используя при этом различие длин волн света и электронов (это соотношение, например, может быть порядка 6000А° /0,030А° » 200000).

В таком "безлинзовом", а потому и не вносящим искажений увеличении и заключается основное достоинство метода голографии в электронной микроскопии.

К числу новых направлений следует также отнести область микроскопии, использующую вместо электронов другие виды микрочастиц, тяжелых по сравнению с электронами. В этом случае дифракционный предел, предсказываемый теорией, смещен в более далекую область малых размеров. Примером такого направления микроскопии является развивающаяся автоионная микроскопия.

В автоионных микроскопах, используемых при исследовании физики поверхностных явлений, главным образом в металлах, оказывается возможным видение отдельных атомов. Методика автоионной микроскопии весьма своеобразна; эта область претерпевает бурное развитие.

Как же далеко мы сможем еще продвинуться по пути раскрытия тайн микрообъектов? Мы видим, что за исторически короткий срок, используя новейшие достижения физики и радиоэлектроники, электронная микроскопия превратилась в мощное орудие исследования природы. Обозримое будущее этой области науки связано с реализацией дерзновенных проектов создания таких приборов, которые позволят "приблизить" и сделать зримым многообразный и красочный микромир. Далеко не всё ещё ясно на этом пути, на котором постоянно возникают всё более и более сложные научно-технические и технологические проблемы. Современные приборы микроскопии являются несравненно более сложными устройствами, чем микроскопы недавнего прошлого.

Уже сейчас мы сталкиваемся с очевидным фактом: приборы микроскопии становятся всё более сложными и громоздкими по мере проникновения в ранее недосягаемые тайны мира малых объектов. Дальнейшее усложнение этих приборов, увеличение затрат на их изготовление определяются необходимостью разрешения новых всё более сложных проблем.

Здесь уместно провести аналогию с развитием экспериментальной ядерной физики, где получение информации о свойствах микрочастиц вещества, из которых состоят ядра атомов, связано с созданием сложнейших и, как правило, чрезвычайно громоздких и дорогих приборов и установок.

Получение информации, раскрывающей тайны микромира, оплачивается высокой ценой. Однако происходящие при этом затраты интеллектуальных и материальных ресурсов, как показывает опыт истории науки, безусловно, окупаются теми возможностями, которые открываются при этом в технике, физике, химии, биологии и медицине. [/sms]

16 окт 2008, 13:22
Информация
Комментировать статьи на сайте возможно только в течении 100 дней со дня публикации.