Последние новости
19 июн 2021, 22:57
Представитель политического блока экс-президента Армении Сержа Саргсяна "Честь имею" Сос...
Поиск

11 фев 2021, 10:23
Выпуск информационной программы Белокалитвинская Панорама от 11 февраля 2021 года...
09 фев 2021, 10:18
Выпуск информационной программы Белокалитвинская Панорама от 9 февраля 2021 года...
04 фев 2021, 10:11
Выпуск информационной программы Белокалитвинская Панорама от 4 февраля 2021 года...
02 фев 2021, 10:04
Выпуск информационной программы Белокалитвинская Панорама от 2 февраля 2021 года...
Главная » Библиотека » Рефераты » Рефераты по физике » Реферат: Электроны и электронная оптика

Реферат: Электроны и электронная оптика

Реферат:  Электроны и электронная оптика Подлинная революция в микроскопии произошла в 20-х годах нашего века, когда возникла идея использовать в ней потоки частиц - электронов. На основе этой идеи возникла и быстро развилась новая область науки ? электронная микроскопия, позволившая осуществить наиболее глубокий прорыв в области видения и изучения сверхмалых объектов.

Мы привыкли к тому, что видение объекта, формирование его изображения связаны с поступлением в прибор (а в конечном счёте в глаз) световых волн от этого предмета, того, что мы называем излучением. Как же можно получить изображение объекта, причём даже с гораздо более высокой разрешающей способностью, используя не световое излучение, а поток электронов? Другими словами, как возможно видение предметов на основе использования не волн, а частиц?
[sms]Забегая несколько вперед, скажем, что электроны проявляют волновые свойства отнюдь не в меньшей мере, чем "настоящие", привычные волны, например, радио или световые. Но об этом ниже... Вместе с тем электроны ведут себя как настоящие частицы, обладающие массой, траекторией движения, энергией и другими свойствами, присущими различным предметам. Так в первую очередь ведут себя электроны во многих приборах и устройствах, широко применяющихся не только в науке и технике, но и в быту ѕ в электронных лампах, кинескопах и других электронных приборах радиоприёмников и телевизоров.

Современная физика весьма подробно знает "анкетные данные" электрона. Это отрицательно заряженная частица (e=4,8e-10 CGSE) с массой 9,1e-28 г, но физики тщательно обходят вопросы, которые иногда хочется задать чрезмерно любопытным, например о форме электрона, а о его размерах обычно говорят с оговорками. Звучит эта оговорка примерно так: "классический радиус электрона составляет ~ 10­ -13 см, а в рамках релятивистской теории это вообще точечная частица". Если не касаться определённой группы ситуаций, в которых электроны ведут себя не по правилам "здравого смысла" (об этом ниже), то это частицы, поведение которых можно описать и весьма точно рассчитать по законам механики и теории электромагнетизма, как и любого другого объекта. Правда, в этих случаях, т. е. тогда, когда ещё не проявляются закономерности так называемой квантовой механики, приходится учитывать проявление эффектов теории относительности (релятивистских эффектов) и в первую очередь возрастание массы электрона с ростом скорости его движения.

Во многих практических применениях электронных потоков, например в вакуумных приборах, электроны ведут себя как вполне "нормальные" частицы. Под действием известной силы, например, создаваемой электрическим полем между электродами, электрон приобретает ускорение, пропорциональное силе и обратно пропорциональное его массе. Движущиеся потоки электронов эквивалентны электрическим токам, поэтому могут эффективно взаимодействовать с внешними магнитными полями. Таким образом, электрические и магнитные поля могут существенно влиять на траектории и скорости электронных потоков, и с помощью таких полей можно управлять движением электронов. Наука, занимающаяся нахождением траекторий движения электронов в электрических и магнитных полях, а также расчётом элементов и устройств, способных формировать нужные поля, называется электронной оптикой (обратите внимание ѕ электронной оптикой ).

Более подробный анализ анкетных данных электрона обнаруживает необычность ряда его свойств. Действительно, если подходить к электрону с обычными мерками и считать, что он занимает объём V и обладает массой m, то "плотность вещества в электроне" r » (m/V)=(9,1e-28)/(4/3* p * r­ 3)» 10­ 11 г/см­ 3 (!). Здесь мы считаем электрон шариком с радиусом r порядка 10­ -13 см. Масса, заряд и некоторые другие постоянные, характеризующие электроны, известны уже с весьма высокой точностью. Вопрос о том, каким образом электрон удерживается как целое и не разлетается под действием сил расталкивания, выходит далеко за рамки этого рефератај

Если предметам, с которыми мы имеем дело в повседневной жизни, достаточно трудно сообщить большую скорость (например, порядка нескольких километров в секунду), то электрон даже в поле с U=1В приобретает скорость V=(2* e/m* U)­ 0,5» 6e7 см/сек. Таким образом, электроны легче разогнать до больших скоростей, чем "остановить", т. е. заставить находиться в покое. Электроны в обычной медицинской рентгеновской трубке тормозятся в поверхностном слое антикатода, проходя при этом путь в несколько ангстрем. Отрицательное ускорение на пути s (например, при U» 100 кв.) при этом будет весьма велико:

w » (v­ 2)/(2* s)» 10­ 23 см/сек­ 2 (!).

Наконец, укажем, что, как правило, в наших приборах для их нормальной работы необходим электронный поток, содержащий внушительное число частиц (например, электронному току в 1A соответствует поток электронов в 10­ 19 частиц в секунду!).

Итак, положение с электронами выглядит своеобразно:

есть объект, которым мы умеем управлять и свойства которого научились использовать;
мы достаточно хорошо знаем свойства этого объекта и научились проводить измерение даже точнее, чем для многих других объектов, с которыми встречаемся в повседневной жизни и которые можем видеть невооружённым глазом;
никто никогда не видел электронов, но все знакомы с результатами его действий;
с точки зрения "здравого смысла" и на основе сопоставления результатов очень хорошо поставленных экспериментов электрон является далеко не тривиальным объектом: плотность электронного вещества фантастически велика, он является сверх прочным объектом, способным "противостоять" действию сверхбольших инерциальных и электрических (кулоновских) сил.
Электроны ѕ волны

Нечего удивляться, что столь "странная личность", какой является электрон, ведёт себя уже совсем необычно в ряде ситуаций. Эти ситуации проявляются, во-первых, тогда, когда электронов много или вернее, когда их много в единице объёма и, во-вторых, когда электроны взаимодействуют с атомами и молекулами вещества. Эти и ряд других ситуаций характерны для явлений, рассматриваемых квантовой механикой. Из этой удивительной области мы упомянем только то, что в ряде ситуаций электрон ведёт себя как волна. Что это значит?

Мы знаем, что, например, световые волны при взаимодействии с пространственной периодической структурой претерпевают дифракцию. Точно так же при соблюдении определённых условий волны могут интерферировать. Аналогичные свойства наблюдаются у электронов. Так, например, в определённых условиях электронный поток, взаимодействующий с периодической пространственной структурой кристалла, образует дифракционную картину, которую можно зафиксировать на фотопластинке. Известно большое число фактов, когда электроны проявляют волновые свойства. Более того, советские учёные В. Фабрикант, Л. Биберман и Н. Сушкин продемонстрировали волновые свойства отдельных электронов!

Итак, анкетные данные электрона выглядят странно и необычно.

Не вдаваясь в тонкости вопроса о волновых свойствах электронов (как и других микрочастиц!), скажем, что электрону, движущемуся со скоростью v(см/сек), соответствует длина волны l =h/(m* v), где m ѕ масса электрона, а h= 6,6e-27 эрг* сек ѕ знаменитая константа Планка.

Так как v=(2* e/m* U), то l =(12,25/U­ 0,5)A° ; здесь U выражено в киловольтах.

Так, например, при U=100 кв. l =0,037 A° . Таким образом, если использовать электроны в микроскопии, то дифракционный предел, обусловленный волновыми свойствами электронов, лежит значительно дальше, чем в оптической микроскопии. А так как электронами можно управлять с помощью электрических и магнитных полей, то электронная оптика позволяет нам заранее рассчитывать такие системы формирования этих полей, которые способны фокусировать потоки электронов, управлять электронными лучами и совершать другие необходимые действия.

В нашем распоряжении также имеются люминесцентные экраны, которые светятся при попадании на их поверхность электронов (вспомним работу кинескопа в телевизоре!); при попадании электронов на фотопластинку происходит фотолитическое почернение. Существуют и другие способы регистрации электронов. Напомним, что электроны способны, кроме того, проникать сквозь тонкие слои материалов, отражаться и рассеиваться материалами. Эти свойства электронов и их взаимодействия с полями и исследуемым веществом лежат в основе электронной микроскопии. Рассмотрим схемы и особенности устройства электронных микроскопов. [/sms]

16 окт 2008, 13:51
Информация
Комментировать статьи на сайте возможно только в течении 100 дней со дня публикации.