Последние новости
03 дек 2016, 15:27
Украинские силовики стягивают минометы, танки и реактивные системы залпового огня (РСЗО)...
Поиск





Реферат: Автобензины

Реферат:  Автобензины 1. Общая характеристика бензинов.

Бензин - продукт переработки нефти представляющий собой горючее с низкими детонационными характеристиками. Из сырой нефти производится до 50% бензина. Эта величина включает природный бензин, бензин крекинг-процесса, продукты полимеризации, сжиженные нефтяные газы и все продукты, используемые в качестве промышленных моторных топлив.
[sms]Бензины предназначены для применения в поршневых двигателях внутреннего сгорания с принудительным воспламенением (от искры). Современные автомобильные бензины должны удовлетворять ряду требований, обеспечивающих экономичную и надежную работу двигателя, и требованиям эксплуатации: иметь хорошую испаряемость, позволяющую получить однородную топливовоздушную смесь оптимального состава при любых температурах; иметь групповой углеводородный состав, обеспечивающий устойчивый, бездетонационный процесс сгорания на всех режимах работы двигателя; не изменять своего состава и свойств при длительном хранении и не оказывать вредного влияния на детали топливной системы, резервуары, резинотехнические изделия и др. В последние годы экологические свойства топлива выдвигаются на первый план.

2.Состав и свойства бензинов

2.1. Состав бензинов.

Бензин - представляет собой смесь углеводородов состоящих в основном из предельных 25-61 %, непредельных 13-45%, нафтеновых 9-71 %, ароматических 4-16 % углеводородов с длиной молекулы углеводорода от C 5 до C 10 и числом углеродных атомов от 4-5 до 9-10 со средней молекулярной массой около 100Д. Так же в состав бензина могут входить примеси - серо-, азот- и кислослородсодержащих соединений .

Бензин - это самая легкая фракция из жидких фракций нефти. Эту фракцию получают в числе разных процессов возгонки нефти. По этому от фракционного состава бензинов зависят легкость и надежность пуска двигателя, полнота сгорания, длительность прогрева, приемистость автомобиля и интенсивность износа деталей двигателя. Фракционный состав бензинов определяется согласно ГОСТа 2177-82 .

Легкие фракции бензина характеризуют пусковые свойства топлива - чем ниже температура выкипания топлива, тем лучше пусковые свойства. Для запуска холодного двигателя необходимо, чтобы 10% бензина выкипало при температуре не выше 55 градусов (зимний сорт) и 70 градусов (летний) по Цельсию. Зимние сорта бензина имеют более легкий (чем летние) фракционный состав. Легкие фракции нужны только на период пуска и прогрева двигателя.

Основная часть топлива называется рабочей фракцией. От ее испаряемости зависят: образование горючей смеси при разных режимах работы двигателя, продолжительность прогрева (перевода с холостого хода под нагрузку), приемистость (возможность быстрого перевода с одного режима на другой). Содержание рабочей фракции должно совпадать с 50% отгона. Минимальный интервал температур от 90% до конца кипения улучшает качество топлива и снижает его склонность к конденсации, что повышает экономичность и уменьшает износ деталей двигателя. Температуру выкипания 90% топлива иногда называют точкой росы

2.2. Свойства бензинов.

Бензины - легковоспламеняющиеся бесцветные или слегка желтые (при отсутствии специальных добавок) жидкости, имеющие плотность 700-780 кг/мі. Бензины имеют высокую летучесть, и температуру вспышки в пределах 20-40 градусов по Цельсию. Температура кипения бензинов находится в интервале от 30 до 200 C. Температура застывания - ниже минус 60 градусов. При сгорании бензинов образуется вода и углекислый газ. При концентрациях паров в воздухе 70-120 г/мі образуются взрывчатые смеси.

Автомобильные бензины в силу своих физико-химических характеристик должны обладать следующими свойствами:

Однородность смеси;
Плотность топлива - при +20 "С должна составлять 690...750 кг/м;
Небольшую вязкость - с ее увеличением затрудняется протекание топлива через жиклеры, что ведет к обеднению смеси. Вязкость в значительной степени зависит от температуры. При изменении температуры от +40 до -40 °С расход бензина через жиклер меняется на 20...30%;
Испаряемость - способность переходить из жидкого состояния в газообразное. Автомобильные бензины должны обладать такой испаряемостью, чтобы обеспечивались легкий пуск двигателя (особенно чвзимой), его быстрый прогрев, полное сгорание топлива, а также исключалось образование паровых пробок в топливной системе;
Давление насыщенных паров - чем выше давление паров при испарении топлива в замкнутом пространстве, тем интенсивнее процесс их конденсации. Стандартом ограничивается верхний предел давления паров летом - до 670 ГПа и зимой - от 670 до 930 ГПа. Бензины с более высоким давлением склонны к образованию паровых пробок, при их использовании снижается наполнение цилиндров и теряется мощность двигателя, увеличиваются потери от испарения при хранении в баках автомобилей и на складах;
Низкотемпературные свойства - способность бензина выдерживать низкие температуры;
7. Сгорание бензина. Под "сгоранием" применительно к автомобильным двигателям понимают быструю реакцию взаимодействия углеводородов топлива с кислородом воздуха с выделением значительного количества тепла. Температура паров при горении достигает 1500...2400 °С.
2.3. Октановое число.

Для улучшения эксплуатационных свойств бензинов производители повышают их октановое число. Это достигается путем добавления к бензинам некоторых высокооктановых компонентов.

Октановое число - показатель детонационных свойств моторного топлива. Детонацией называют такой характер горения, при котором воспламенение горючей смеси происходит в нескольких точках цилиндра или по всему объему сразу.

Октановое число - наиболее важная характеристика бензина. Если октановое число бензина равно 95, то это означает, что он детонирует как смесь 95% изооктана и 5% гептана. Октановое число бензина после первичной перегонки нефти обычно не превышает 70. По этому для повышения качества низкосортных бензинов помимо компаудирования используют антидетонаторы (до 0,3%).

2.4. Присадки.

Присадки - вещества, добавляемые (обычно в количествах 0,05-0,1%) к топливам, минеральным и синтетическим маслам для улучшения их эксплуатационных свойств. К присадкам относятся, антидетонаторы, антиокислители, ингибиторы коррозии и др. Подробнее виды и назначение присадок рассмотрены в приложении №1 "Перечень допущенных присадок".

3.Сырьё для получения бензина.

Сырьём для получения бензина является нефть. Нефть - это природная жидкая смесь разнообразных углеводородов с небольшим количеством других органических соединений; ценное полезное ископаемое, залегающее часто вместе с газообразными углеводородами (попутные газы, природный газ).

Соединения сырой нефти - это сложные вещества, состоящие из пяти элементов - C, H, S, O и N, причем содержание этих элементов колеблется в пределах 82-87% углерода, 11-15% водорода, 0,01-6% серы, 0-2% кислорода и 0,01-3% азота.

Углеводороды - основные компоненты нефти и природного газа. Простейший из них - метан CH4 - является основным компонентом природного газа. Все углеводороды могут быть подразделены на алифатические (с открытой молекулярной цепью) и циклические, а по степени ненасыщенности углеродных связей - на парафины и циклопарафины, олефины, ацетилены и ароматические углеводороды. Обычная сырая нефть из скважины - это зеленовато-коричневая легко воспламеняющаяся маслянистая жидкость с резким запахом.

Химически нефти очень различны и изменяются от парафиновых, которые состоят большей частью из парафиновых углеводородов, до нафтеновых или асфальтеновых, которые содержат в основном циклопарафиновые углеводороды; существует много промежуточных или смешанных типов. Парафиновые нефти по сравнению с нафтеновыми или асфальтеновыми обычно содержат больше бензина и меньше серы и являются главным сырьем для получения смазочных масел и парафинов. Нафтеновые типы сырых нефтей, в общем, содержат меньше бензина, но больше серы и мазута, и асфальта.

 

4.Технология производства бензина.

4.1.Перегонка.

 

Поступающая нефть нагревается в змеевике примерно до 320°С, и разогретые продукты подаются на промежуточные уровни в ректификационной колонне. Такая колонна может иметь от 30 до 60 расположенных с определенным интервалом поддонов и желобов, каждый из которых имеет ванну с жидкостью. Через эту жидкость проходят поднимающиеся пары, которые омываются стекающим вниз конденсатом. При надлежащем регулировании скорости обратного стекания (т.е. количества дистиллятов, откачиваемых назад в колонну для повторного фракционирования) возможно получение бензина наверху колонны, керосина и светлых горючих дистиллятов точно определенных интервалов кипения на последовательно снижающихся уровнях. Обычно для того, чтобы улучшить дальнейшее разделение, остаток от перегонки из ректификационной колонны подвергают вакуумной дистилляции.

 

4.2.Термический крекинг.

Склонность к дополнительному разложению более тяжелых фракций сырых нефтей при нагреве выше определенной температуры привела к очень важному успеху в использовании крекинг-процесса. Когда происходит разложение высококипящих фракций нефти, углерод и углеродные связи разрушаются, водород отрывается от молекул углеводородов и тем самым получается более широкий спектр продуктов по сравнению с составом первоначальной сырой нефти. Например, дистилляты, кипящие в интервале температур 290-400° С, в результате крекинга дают газы, бензин и тяжелые смолоподобные остаточные продукты. Крекинг-процесс позволяет увеличить выход бензина из сырой нефти путем деструкции более тяжелых дистиллятов и остатков, образовавшихся в результате первичной перегонки.

 

4.3.Каталитический крекинг.

Катализатор - это вещество, которое ускоряет протекание химических реакций без изменения сути самих реакций. Каталитическими свойствами обладают многие вещества, включая металлы, их оксиды, различные соли.

Процесс Гудри. Исследования Э.Гудри огнеупорных глин как катализаторов привели к созданию в 1936 эффективного катализатора на основе алюмосиликатов для крекинг-процесса.

Среднекипящие дистилляты нефти в этом процессе нагревались и переводились в парообразное состояние; для увеличения скорости реакций расщепления, т.е. крекинг-процесса, и изменения характера реакций эти пары пропускались через слой катализатора. Реакции происходили при умеренных температурах 430-480°С и атмосферном давлении в отличие от процессов термического крекинга, где используются высокие давления. Процесс Гудри был первым каталитическим крекинг-процессом, успешно реализованным в промышленных масштабах.

4.4.Риформинг.

Риформинг - это процесс преобразования линейных и нециклических углеводородов в бензолоподобные ароматические молекулы. Ароматические углеводороды имеют более высокое октановое число, чем молекулы других углеводородов, и поэтому они предпочтительней для производства современного высокооктанового бензина.

Существуют два основных вида риформинга - термический и каталитический. В первом соответствующие фракции первичной перегонки нефти превращаются в высокооктановый бензин только под воздействием высокой температуры; во втором преобразование исходного продукта происходит при одновременном воздействии как высокой температуры, так и катализаторов. Более старый и менее эффективный термический риформинг используется до сих пор, но в развитых странах почти все установки термического риформинга заменены на установки каталитического риформинга.

Если бензин является предпочтительным продуктом, то почти весь риформинг осуществляется на платиновых катализаторах, нанесенных на алюминийоксидный или алюмосиликатный носитель.

Реакции, в результате которых при каталитическом риформинге повышается октановое число, включают:

дегидрирование нафтенов и их превращение в соответствующие ароматические соединения;
превращение линейных парафиновых углеводородов в их разветвленные изомеры;
гидрокрекинг тяжелых парафиновых углеводородов в легкие высокооктановые фракции;
образование ароматических углеводородов из тяжелых парафиновых путем отщепления водорода.
4.5.Полимеризация.

Кроме крекинга и риформинга существует несколько других важных процессов производства бензина. Первым из них, который стал экономически выгодным в промышленных масштабах, был процесс полимеризации, который позволил получить жидкие бензиновые фракции из олефинов, присутствующих в крекинг-газах.

Полимеризация пропилена - олефина, содержащего три атома углерода, и бутилена - олефина с четырьмя атомами углерода в молекуле дает жидкий продукт, который кипит в тех же пределах, что и бензин, и имеет октановое число от 80 до 82. Нефтеперерабатывающие заводы, использующие процессы полимеризации, обычно работают на фракциях крекинг-газов, содержащих олефины с тремя и четырьмя атомами углерода.

4.6.Алкилирование.

В этом процессе изобутан и газообразные олефины реагируют под действием катализаторов и образуют жидкие изопарафины, имеющие октановое число, близкое к таковому у изооктана. Вместо полимеризации изобутилена в изооктен и затем гидрогенизации его в изооктан, в данном процессе изобутан реагирует с изобутиленом и образуется непосредственно изооктан.

Все процессы алкилирования для производства моторных топлив производятся с использованием в качестве катализаторов либо серной, либо фтороводородной кислоты при температуре сначала 0-15° C, а затем 20-40° С.

4.7.Изомеризация.

Другой важный путь получения высокооктанового сырья для добавления в моторное топливо - это процесс изомеризации с использованием хлорида алюминия и других подобных катализаторов.

Изомеризация используется для повышения октанового числа природного бензина и нафтенов с прямолинейными цепями.Улучшение антидетонационных свойств происходит в результате превращения нормальных пентана и гексана в изопентан и изогексан.

Процессы изомеризации приобретают важное значение, особенно в тех странах, где каталитический крекинг с целью повышения выхода бензина проводится в относительно незначительных объемах. При дополнительном этилировании, т.е. введении тетраэтилсвинца, изомеры имеют октановые числа от 94 до 107 (в настоящее время от этого способа отказались ввиду токсичности образующихся летучих алкилсвинцовых соединений, загрязняющих природную среду).

4.8.Гидрокрекинг.

Давления, используемые в процессах гидрокрекинга, составляют от примерно от 70 атм. для превращения сырой нефти в сжиженный нефтяной газ (LP-газ) до более чем 175 атм., когда происходят полное коксование и с высоким выходом превращение парообразной нефти в бензин и реактивное топливо. Процессы проводят с неподвижными слоями (реже в кипящем слое) катализатора. Процесс в кипящем слое применяется исключительно для нефтяных остатков - мазута, гудрона. В других процессах также использовались остаточное топливо, но в основном - высококипящие нефтяные фракции, а кроме того, легкокипящие и среднедистиллятные прямогонные фракции. Катализаторами в этих процессах служат сульфидированные никель-алюминиевые, кобальт-молибден-алюминиевые, вольфрамовые материалы и благородные металлы, такие, как платина и палладий, на алюмосиликатной основе.

Там, где гидрокрекинг сочетается с каталитическим крекингом и коксованием, не менее 75-80% сырья превращается в бензин и реактивное топливо. Выработка бензина и реактивных топлив может легко изменяться в зависимости от сезонных потребностей. При высоком расходе водорода выход продукции на 20-30% выше, чем количество сырья, загружаемого в установку. С некоторыми катализаторами установка работает эффективно от двух до трех лет без регенерации.

5.Классификация бензинов.

Все бензины отличаются друг от друга, как по составу, так и по свойствам, так как их получают не только как продукт первичной возгонки нефти, но и как продукт попутного газа (газовый бензин) и тяжелых фракций нефти (крекинг-бензин).

Бензины классифицируют по разным основаниям, включая интервалы температур кипения, октановое число, содержание серы.

Крекинг-бензины содержат значительный процент тех компонентов, при смешении которых образуется моторное топливо. Однако их прямое использование во многих странах законодательно ограничивается, поскольку они содержат заметное количество олефинов, а именно олефины являются одной из главных причин образования фотохимического смога.

Крекинг-бензин представляет собой продукт дополнительной переработки нефти. Обычная перегонка нефти дает всего 10-20% бензина. Для увеличения его количества более тяжелые или высококипящие фракции нагревают с целью разрыва больших молекул до размеров молекул, входящих в состав бензина. Это и называют крекингом. Крекинг мазута проводят при температуре 450-550°С. Благодаря крекингу можно получать из нефти до 70% бензина.

Бензин газовый представляет собой продукт переработки попутного нефтяного газа, содержащий предельные углеводороды с числом атомов углерода не менее трех. Различают стабильный (БГС) и нестабильный (БГН ) варианты газового бензина. БГС бывает двух марок - легкий (БЛ) и тяжелый (БТ). Применяется в качестве сырья в нефтехимии, на заводах органического синтеза, а также для компаундирования автомобильного бензина (получения бензина с заданными свойствами путем его смешивания с другими бензинами).

Пиролиз - это крекинг при температурах 700-800°С. Крекинг и пиролиз позволяют довести суммарный выход бензина до 85%. Необходимо отметить, что первооткрывателем крекинга и создателем проекта промышленной установки в 1891 году был русский инженер В.Г.Шухов.

Этилированные бензины. Это вид бензинов, который получил своё название главным образом из-за входящей в его состав антидетонационной присадки антидетонатора - тетраэтилсвинца (ТЭС), служащей для повышения октанового числа в бензинах. ТЭС представляет собой маслянистую бесцветную жидкость с плотностью 1652,4 кг/куб.м. Температура кипения ТЭС составляет 200 градусов Цельсия, он растворим в бензине и органических растворителях, чрезвычайно ядовит, относится к первой группе опасности по отравляющему действию. ТЭС неустойчив - под действием температуры, солнечного света, воды, воздуха разлагается с образованием белого осадка.

ТЭС используют в смеси с так называемыми "выносителями", при сгорании превращающими свинцовые соединения в газообразное состояние. Смесь ТЭС и "выносителя" называется этиловой жидкостью, а бензины, к которым добавлена этиловая жидкость этилированными

Для отличия этилированных бензинов от неэтилированных первые окрашиваются в яркие цвета. Эффективно повышают октановое число бензинов первые 0,5-2 мл этиловой жидкости. Способность повышать свое октановое число от прибавления этиловой жидкости зависит от химического состава бензина. Превышение оптимального количества способствует увеличению нагарообразования и освинцовывания деталей. Образующиеся нагары провоцируют калильное зажигание. Отработанные газы автомобилей, работающих на этилированном бензине, имеют повышенную токсичность за счет свинцовых соединений.

6. Характеристика ассортимента бензинов.

Основную массу автомобильных бензинов в России вырабатывают по ГОСТ 2084-77 и ГОСТ Р51105-97 и ТУ 38.001165-97. В зависимости от октанового числа ГОСТ 2084-77 предусматривает пять марок автобензинов: А-72, А-76, АИ-91, АИ-93 и АИ-95. Для первых двух марок цифры указывают октановые числа, определяемые по моторному методу, для последних - по исследовательскому.

В связи с увеличением доли легкового транспорта в общем объеме автомобильного парка наблюдается заметная тенденция снижения потребности в низкооктановых бензинах и увеличения потребления высокооктановых.

Бензин А-72 практически не вырабатывается ввиду отсутствия техники, эксплуатируемой на нем. Наибольшая потребность существует в бензине А-92, который вырабатывается по ТУ 38.001165-97, хотя доля бензина А-76 в общем объеме производства остается очень высокой. Указанные ТУ предусматривают также марки бензинов А-80 и А-96 с октановыми числами по исследовательскому методу соответственно 80 и 96.

Эти бензины предназначены в основном для поставки на экспорт. Бензин АИ-98 с октановым числом 98 по исследовательскому методу производится по ТУ 38.401-58-122-95 и ТУ 38.401-58-127-95. Бензины А-76, А-80, АИ-91, А-92 и А-96 допускается вырабатывать с использованием этиловой жидкости. Малоэтилированный бензин АИ-91 с содержанием свинца 0,15 г/дм3 выпускается по отдельным техническим условиям (ТУ 38.401-58-86-94). При производстве бензинов АИ-95 и АИ-98 использование алкилсвинцовых антидетонаторов не допускается. Требования ГОСТ 2084-77 к качеству автомобильных бензинов приведены в таблице.

Все бензины, вырабатываемые по ГОСТ 2084-77, в зависимости от показателей испаряемости делят на летние и зимние.

Зимние бензины предназначены для применения в северных и северо-восточных районах в течение всех сезонов и в остальных районах с 1 октября до 1 апреля.
Летние - для применения во всех районах кроме северных и северо-восточных в период с 1 апреля по 1 октября; в южных районах допускается применять летний бензин в течение всех сезонов.
Параметры автомобильных бензинов, вырабатываемых по ГОСТ 2084-77, существенно отличаются от принятых международных норм, особенно в части экологических требований. В целях повышения конкурентоспособности российских бензинов и доведения их качества до уровня европейских стандартов разработан ГОСТ Р 51105-97 "Топлива для двигателей внутреннего сгорания. Неэтилированный бензин. Технические условия", который вводится в действие с 01.01.99 г. Этот стандарт не заменяет ГОСТ 2084-77, которым предусмотрен выпуск как этилированных, так и неэтилированных бензинов. В соответствии с ГОСТ Р 51105-97 будут вырабатываться только неэтилированные бензины (максимальное содержание свинца не более 0,01 г/дм3).

В зависимости от октанового числа по исследовательскому методу установлено четыре марки бензинов: "Нормаль-80", "Регуляр-91", "Премиум-95", "Супер-98". Бензин "Нормаль-80" предназначен для использования на грузовых автомобилях наряду с бензином А-76. Неэтилированный бензин "Регуляр-91" предназначен для эксплуатации автомобилей взамен этилированного А-93. Автомобильные бензины "Премиум-95" и "Супер-98" полностью отвечают европейским требованиям, конкурентоспособны на нефтяном рынке и предназначены в основном для зарубежных автомобилей, в возимых в Россию.

С целью ускорения перехода на производство неэтилированных бензинов взамен этиловой жидкости допускается использование марганцевого антидетонатора в концентрации не более - 5 мг Мn/дм3 для марки "Нормаль-80" и не более 18 мг Мn/дм3 для марки "Регуляр-91". В соответствии с европейскими требованиями по ограничению содержания бензола введен показатель "объемная доля бензола" - не более 5 %. Установлена норма по показателю "плотность при 15 °С". Ужесточена норма на массовую долю серы - до 0,05 %.

Для обеспечения нормальной эксплуатации автомобилей и рационального использования бензинов введено пять классов испаряемости для применения в различных климатических районах по ГОСТ 16350-80. Наряду с определением температуры перегонки бензина при заданном объеме предусмотрено определение объема испарившегося бензина при заданной температуре 70, 100 и 180 °С. Введен показатель "индекс испаряемости". В ГОСТ Р 51105-97 наряду с отечественными включены международные стандарты на методы испытаний (ISO, EN, ASTM).

Примечания.
1. Содержание марганца определяют только для бензинов, с марганцевым антидетонатором (МЦТМ).
2. Автомобильные бензины, предназначенные для длительного хранения (5 лет) в Госрезерве и Министерстве обороны, должны иметь индукционный период не менее 1200 мин.

По составу автомобильные бензины представляют собой смесь компонентов, получаемых в результате различных технологических процессов: прямой перегонки нефти, каталитического риформинга, каталитического крекинга и гидрокрекинга вакуумного газойля, изомеризации прямогонных фракций, алкилирования, ароматизации термического крекинга, висбрекинга, замедленного коксования. Компонентный состав бензина зависит, в основном, от его марки и определяется набором технологических установок на нефтеперерабатывающем заводе.

Базовым компонентом для выработки автомобильных бензинов являются обычно бензины каталитического риформинга или каталитического крекинга. Бензины каталитического риформинга характеризуются низким содержанием серы, в их составе практически отсутствуют олефины, поэтому они высокостабильны при хранении. Однако повышенное содержание в них ароматических углеводородов с экологической точки зрения является лимитирующим фактором. К их недостаткам также относится неравномерность распределения детонационной стойкости по фракциям. В составе бензинового фонда России доля компонента каталитического риформинга превышает 50 %.

Бензины каталитического крекинга характеризуются низкой массовой долей серы, октановыми числами по исследовательскому методу 90-93 единицы. Содержание в них ароматических углеводородов составляет 30-40 %, олефиновых - 25-35 %. В их составе практически отсутствуют диеновые углеводороды, поэтому они обладают относительно высокой химической стабильностью (индукционный период 800-900 мин.). По сравнению с бензинами каталитического риформинга для бензинов каталитического крекинга характерно более равномерное распределение детонационной стойкости по фракциям. Поэтому в качестве базы для производства автомобильных бензинов целесообразно использовать смесь компонентов каталитического риформинга и каталитического крекинга.

Бензины таких термических процессов, как крекинг, замедленное коксование имеют низкую детонационную стойкость и химическую стабильность, высокое содержание серы и используются только для получения низкооктановых бензинов в ограниченных количествах. При производстве высокооктановых бензинов используются алкилбензин, изооктан, изопентан и толуол. Бензины АИ-95 и АИ-98 обычно получают с добавлением кислородсодержащих компонентов: метил-трет-бутилового эфира (МТБЭ) или его смеси с трет-бутанолом, получившей название фэтерол. Введение МТБЭ в бензин позволяет повысить полноту его сгорания и равномерность распределения детонационной стойкости по фракциям. Максимально допустимая концентрация МТБЭ в бензинах составляет 15 % из-за его относительно низкой теплоты сгорания и высокой агрессивности по отношению к резинам.

Для достижения требуемого уровня детонационных свойств этилированных бензинов к ним добавляют этиловую жидкость (до 0,15 г свинца/дм3 бензина). К бензинам вторичных процессов, содержащим непредельные углеводороды, для их стабилизации и обеспечения требований по индукционному периоду разрешается добавлять антиокислители Агидол-1 или Агидол-12. В целях обеспечения безопасности в обращении и маркировки этилированные бензины должны быть окрашены. Бензин А-76 окрашивается в желтый цвет жирорастворимым желтым красителем К, бензин АИ-91 - в оранжево-красный цвет жирорастворимым темно-красным красителем Ж. Этилированные бензины, предназначенные для экспорта, не окрашиваются.

В последнее время ассортимент автобензинов значительно пополнился за счет новых марок, выпускаемых по техническим условиям. Это обусловлено резким ростом производства неэтилированного бензина и сокращением производства бензина этилированного.

При этом тетраэтилсвинец заменяется на различные нетрадиционные присадки и добавки, ранее выпускаемыми химической и микробиологической промышленности в иных целях.

К таким веществам относятся различные эфиры, спирты, металлоорганические соединения и т.д. Необходимость производства таких бензинов по техническим условиям диктуется тем, что все присадки и добавки могут вводиться в строго определенных концентрациях. Для контроля содержания этих компонентов в технических условиях предусматриваются специальные показатели и вводятся дополнительные методики контроля.

Все бензины, выпускаемые по техническим условиям, должны соответствовать требованиям ГОСТ Р 51313-99 "Бензины автомобильные. Общие технические требования", который вводится с 01 июля 2000г.
Соответствие бензинов, выпускаемых по техническим условиям, требованием ГОСТ Р 51313-99 проверяется при их сертификации, которая является обязательной.

7. Правила, маркировки, упаковки, транспортировки и хранение безинов.

В связи с тем, что бензины и горюче - смазочные вещества являются продуктами переработки нефти то правила по их маркировки, упаковки, транспортировки и хранению согласно ГОСТа 1510-84 "Нефть и нефтепродукты" одинаковы, поэтому рассмотрение этого вопроса будет затронуто в конце второй вопроса данной работы. [/sms]

Источник:
10 окт 2008, 09:34
Информация
Комментировать статьи на сайте возможно только в течении 100 дней со дня публикации.