Последние новости
11 дек 2016, 01:40
Дом на Намыве в Белой Калитве по ул. Светлая, 6 давно признан аварийным. Стена первого...
Поиск



Реферат : Анатомия органа зрения

 Реферат :  Анатомия органа зрения

Введение………………………………………………………………………2

1. Краткие сведения о работе глаза…………………………………………..3

2. Строение глаза………………………………………………………………7

1.1. Цилиарная мышца (Ресничное тело)……………………………………..9

1.2. Хрусталик Lens)………………………………………………………….13

1.3. Анатомия аккомодационного аппарата…………………………………. 16

3. Болезни глаз…………………………………………………………………...21

3.1. Близорукость………………………………………………………………21

3.2. Дальнозоркость……………………………………………………………22

3.3. Астигматизм……………………………………………………………….22

Список использованной литературы………………………………………...23

 

Введение

Офтальмология - наука, изучающая анатомию, физиологию органа зрения, заболевания, относящиеся к органу зрения, а также структуру слепоты.

Задачи офтальмологии - максимальное уменьшение количества слепых. По данным ВОЗ в мире насчитывается 42 млн. слепых и слабовидящих. Причем ежегодно наблюдается увеличение этого показателя, и прирост составляет 3-6% в год, что связано с рядом факторов:

увеличение средней продолжительности жизни, и как, следствие общее старение населения. В результате выживают те, ко раньше не доживал до пожилого возраста, и количество слепых увеличивается

увеличение количества больных диабетом за счет успехов в его лечении - чаще стала встречаться диабетическая ретинопатия (раньше до нее не доживали)

успехи в лечении различных форм глаукомы - раньше больные просто не доживали до слепоты проблемы экологии - чрезвычайно повышена яркость света

Основные синдромы в офтальмологии:

[sms]

Синдром красного глаза без снижения зрительной функции. В эту группы относят конъюнктивиты, ячмень, блефариты и т.д.

Синдром красного глаза со снижением зрительной функции - относят кератит, иридоциклин, заболевания заднего отдела сосудистого тракта. Такого больного обязательно следует направить к специалисту

Синдром белого глаза с быстрым снижением зрительной функции (кровоизлияние в сетчатку при сахарном диабете, сосудистые поражения - эмболия, спазм, тромбоз). Эти больные требуют неотложной помощи.

Синдром белого глаза с медленным снижением зрительной функции. Включает в себя макулодистрофию (чаще атеросклеротического характера), атрофию зрительного нерва возрастного генеза, катаракту, открытоугольную глаукому. Такие больные требуют постоянного наблюдения и лечения.

1. Краткие сведения о работе глаза

    Зрительный анализатор состоит из глазного яблока, строение которого схематично представлено на рис. 1, проводящих путей и зрительной коры головного мозга.

 

      

Рис.1.  Схема строения глаза
 1 - склера,
 2 - сосудистая оболочка,
 3 - сетчатка,
 4 - роговица,
 5 - радужка,
 6 - ресничная мышца,
 7 - хрусталик,
 8 - стекловидное тело,
 9 - диск зрительного нерва,
10 - зрительный нерв,
11 - желтое пятно.

    Вокруг глаза расположены три пары глазодвигательных мышц. Одна пара поворачивает глаз влево и вправо, другая - вверх и вниз, а третья вращает его относительно оптической оси. Сами глазодвигательные мышцы управляются сигналами, поступающими из мозга. Эти три пары мышц служат исполнительными органами, обеспечивающими автоматическое слежение, благодаря чему глаз может легко сопровождать взором всякий движущийся вблизи и вдали объект (рис. 2).

 

      

Рис.2.  Мышцы глаза
1 - наружная прямая;
2 - внутренняя прямая;
3 - верхняя прямая;
4 - мышца, поднимающая верхнее веко;
5 - нижняя косая мышца;
6 - нижняя прямая мышца.

    Глаз, глазное яблоко имеет почти шаровидную форму примерно 2,5 см в диаметре. Он состоит из нескольких оболочек, из них три - основные:

склера - внешняя оболочка,

сосудистая оболочка - средняя,

сетчатка - внутренняя.

Склера имеет белый цвет с молочным отливом, кроме передней ее части, которая прозрачна и называется роговицей. Через роговицу свет поступает в глаз. Сосудистая оболочка, средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза. Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок. Функция этой оболочки - ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением - при низкой. За радужной оболочкой расположен хрусталик, похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке. Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов. Достигается это следующим образом (рис.3).

 

      

Рис.3.  Схематическое представление механизма аккомодации
слева - фокусировка вдаль;
справа - фокусировка на близкие предметы.

    Хрусталик в глазу "подвешен" на тонких радиальных нитях, которые охватывают его круговым поясом. Наружные концы этих нитей прикрепляются к ресничной мышце. Когда эта мышца расслаблена (в случае фокусировки взора на удаленном предмете), то кольцо, образуемое ее телом, имеет большой диаметр, нити, держащие хрусталик, натянуты, и его кривизна, а следовательно и преломляющая сила, минимальна. Когда же ресничная мышца напрягается (при рассматривании близко расположенного объекта), ее кольцо сужается, нити расслабляются, и хрусталик становится более выпуклым и, следовательно, более сильно преломляющим. Это свойство хрусталика менять свою преломляющую силу, а вместе с этим и фокусную точку всего глаза, называется аккомодацией.
    Лучи света фокусируются оптической системой глаза на особом рецепторном (воспринимающем) аппарате - сетчатой оболочке. Сетчатка глаза - передний край мозга, исключительно сложное как по своей структуре, так и по функциям образование. В сетчатке позвоночных обычно различают 10 слоев нервных элементов, связанных между собой не только структурно-морфологически, но и функционально. Главным слоем сетчатки является тонкий слой светочувствительных клеток - фоторецепторов. Они бывают двух видов: отвечающие на слабый засвет (палочки) и отвечающие на сильный засвет (колбочки). Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке, кроме самого центра. Благодаря им обнаруживаются предметы на периферии поля зрения, в том числе при низкой освещенности. Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом "желтом пятне". Сетчатка здесь максимально утончается, отсутствуют все слои, кроме слоя колбочек. "Желтым пятном" человек видит лучше всего: вся световая информация, попадающая на эту область сетчатки, передается наиболее полно и без искажений. В этой области возможно лишь дневное, цветное зрение, при помощи которого воспринимаются цвета окружающего нас мира.

От каждой светочувствительной клетки отходит нервное волокно, соединяющее рецепторы с центральной нервной системой. При этом каждую колбочку соединяет свое отдельное волокно, тогда как точно такое же волокно "обслуживает" целую группу палочек.

Под воздействием световых лучей в фоторецепторах происходит фотохимическая реакция (распад зрительных пигментов), в результате которой выделяется энергия (электрический потенциал), несущая зрительную информацию. Эта энергия в виде нервного возбуждения передается в другие слои сетчатки - на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных "помех" в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы. Нервные волокна со всей сетчатки собираются в зрительный нерв в особой области сетчатки - "слепом пятне". Оно расположено в том месте, где зрительный нерв выходит из глаза, и все, что попадает на эту область, исчезает из поля зрения человека. Зрительные нервы правой и левой стороны перекрещиваются, причем у человека и высших обезьян перекрещиваются лишь половина волокон каждого зрительного нерва. В конечном счете вся зрительная информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва в головной мозг, его высшую инстанцию - кору, где и происходит формирование зрительного образа (рис. 4).

 

      

Рис.4.  Схема строения зрительного анализатора
 1 - сетчатка,
 2 - неперекрещенные волокна зрительного нерва,
 3 - перекрещенные волокна зрительного нерва,
 4 - зрительный тракт,
 5 - наружное коленчатое тело,
 6 - radiatio optici,
 7 - lobus opticus,

Окружающий нас мир мы видим ясно, когда все отделы зрительного анализатора "работают" гармонично и без помех. Для того, чтобы изображение было резким, сетчатка, очевидно, должна находиться в заднем фокусе оптической системы глаза. Различные нарушения преломления световых лучей в оптической системе глаза, приводящие к расфокусировке изображения на сетчатке, называются аномалиями рефракции (аметропиями). К ним относятся близорукость (миопия), дальнозоркость (гиперметропия), возрастная дальнозоркость (пресбиопия) и астигматизм (рис. 5).

 

 

 

      

Рис.5.  Ход лучей при различных видах клинической рефракции глаза
a - эметропия (норма);
b - миопия (близорукость);
c - гиперметропия (дальнозоркость);
d - астигматизм.
 

 

 

 

2. Строение глаза

Основное предназначение глаза, а точнее зрительного анализатора - видение предметов окружающей среды и возможность ориентации в ней - обеспечивается многими вспомогательными функциями. Среди них аккомодационная, формирующая четкость предметов воспринимаемой среды на сетчатке глаза, является одной из ведущих. Каждая из этих функций, в том числе и аккомодационная, реализуется своими анатомическими структурами, в совокупности представляющими структуру глазного яблока (рис. 1).  

Глазное яблоко, горизонтальный разрез

 

 

Рис.6 Схема строения глазного яблока

1 - передняя камера; 2 - хрусталик; 3 - стекловидное тело; 4 - сетчатка; 5 - сосудистый слой; 6 - склера; 7 - цилиарное тело; 8 - роговица; 9 - цинновы связки; 10 - мышца Брюкке; 11 - радужка; 12 - зрительный нерв  

Наружная оболочка глаза - склера играет роль "каркаса" для внутренних и наружных элементов глазного яблока. Снаружи к ней крепятся глазодвигательные мышцы, а ее передняя прозрачная часть - роговица служит одним из компонентов оптической системы глаза. Внутри глазного яблока размещаются радужка, хрусталик, стекловидное тело, сетчатка, сосудистый и пигментные слои, цилиарное тело. Между задней поверхностью роговицы и передней поверхностью хрусталика, т.е. в передней камере глаза, циркулирует водянистая влага, продуцируемая отростками цилиарного тела.  

Глазное яблоко, радужка, наружная поверхность

 

 

Шарообразная форма глазного яблока создается, с одной стороны, упругими свойствами склеры, а с другой - давлением внутренних сред глаза на склеру. В результате реципрокного взаимодействия этих сил наружная оболочка глаза постоянно находится под определенным тургором - напряжением, связанным с ее небольшим растяжением, благодаря которому поддерживается шарообразная форма глаза. Его изменение в ту или иную сторону фиксируется в виде колебания внутриглазного давления. Если оно возрастает, то тургор склеры повышается, а при его снижении уменьшается.  

1.2 Цилиарная мышца (Ресничное тело)

На вертикальном срезе глаза ресничное (цилиарное) тело имеет форму кольца шириной, в среднем, 5-6 мм (в носовой половине и вверху 4,6-5,2 мм, в височной и внизу - 5,6-6,3 мм), на меридиональном - треугольника, выступающего в его полость.  

 

Рис.5 Макроструктура ресничного тела на меридиональном (а) и фронтальном (б) срезах глазного яблока.

а - меридиональный срез глазного яблока:

1 - роговица; 2 - радужка; 3 - ресничные отростки; 4 - сосудистый слой ресничного тела; 5 - склера; 6 и 7- меридиональные и циркулярные волокна ресничной мышцы; 8 - большой артериальный круг радужки; 9 - склеральный синус; 10 - трабекулярная диафрагма.

б - фронтальный разрез через передний отдел глазного яблока, вид с внутренней стороны, стекловидное тело удалено:

11 - ora serrata retinae; 12 -orbiculus ciliaris; 13 - corona ciliaris; 14 - processus ciliaris;15 - zonula ciliaris; 16 - lens. 

Макроскопически в этом поясе собственно сосудистой оболочки можно выделить две части - плоскую (orbiculus ciliaris), шириной 4 мм, которая граничит с ora serrata сетчатки, и ресничную (corona ciliaris) с 70-80 беловатыми ресничными отростками (ргоcessus ciliares) при ширине 2 мм. Каждый ресничный отросток имеет вид валика или пластинки высотой около 0,8 мм и длиной (в меридиональном направлении) 2 мм. Поверхность межотростковых впадин также неровная и - покрыта мелкими выступами. На по-верхность склеры ресничное тело проецируется в виде пояска указанной выше ширины (6 мм), начинающегося, а фактически заканчивающегося у склеральной шпоры, т. е. в 2 мм от лимба.  

Гистологически в ресничном теле различают несколько слоев, которые в направлении снаружи кнутри располагаются в следу-ющем порядке: мышечный, сосудистый, базальная пластинка, пиг-ментный и беспигментный эпителий (pars ciliaris retinae) и, наконец, membrana limitans interna, к которой крепятся волокна ресничного пояска.  

Гладкая ресничная мышца начинается у экватора глаза от нежной пигментированной ткани супрахороидеи в виде мышечных звезд, число которых по мере приближения к заднему краю мышцы быстро увеличивается. В конечном итоге они сливаются между собой и образуют петли, дающие видимое начало уже самой ресничной мышцы. Происходит это на уровне зубчатой линии сетчатки.  

В наружных слоях мышцы образующие ее волокна имеют строго меридиональное направление (fibrae meridionales) и носят название m. Brucci. Более глубоко лежащие мышечные волокна приобретают сначала радиальное направление (fibrae radiales, мышца Иванова, 1869), а затем циркулярное (fabrae circulares, m.Mulleri, 1857). 

У места своего прикрепления к склеральной шпоре ресничная мышца заметно истончается. Две порции ее (радиальная и циркулярная) иннервируются глазодвигательным нервом, а продольные волокна - симпатическим. Чувствительная иннервация обеспечивается из plexus ciliaris, образованного длинными и короткими ветвями ресничных нервов.  

Сосудистый слой цилиарного тела является непосредственным продолжением того же слоя хороидеи и состоит, в основном, из вен различного калибра, так как основные артериальные сосуды этой анатомической области проходят в перихороидальном пространстве и сквозь ресничную мышцу. Имеющиеся здесь отдельные мелкие артерии идут в обратном направлении, т. е. в хороидею. Что касается ресничных отростков, то они включают в себя конгломерат из широких капилляров и мелких вен. Спереди к каждому отростку подходит маленькая артерия, а в сторону orbiculus ciliaris отходит несколько вен.  

Lam. basalis ресничного тела также служит продолжением аналогичной структуры хороидеи и покрыта изнутри двумя слоями эпителиальных клеток - пигментированными (в наружном слое) и беспигментными. Оба являются продолжением редуцированной сетчатки. От стекловидного тела беспигментный эпителий отграничен бесструктурной membrana limitans interna, которая аналогична такой же мембране сетчатки.  

Внутренняя поверхность ресничного тела связана с хрусталиком посредством так называемого ресничного пояска (zonula ciliaris), состоящего из множества очень тонких стекловидных волоконец (fibrae zonulares). Этот поясок играет роль подвешивающей связки хрусталика и вместе с ним, а также с ресничной мышцей, составляет единый аккомодационный аппарат глаза.  

Различают передние и задние зонулярные волоконца. Первые отходят от основания ресничных отростков и прикрепляются к капсуле хрусталика в области экватора и позади него, вторые - гнутся от зубчатой линии сетчатки вдоль впадин между ресничными отростками и крепятся к передней капсуле хрусталика впереди экватора. Вследствие описанного выше перекреста передних и задних зонулярных волоконец, у экватора хрусталика образуется щелевидное пространство треугольной формы. Хотя это пространство не замкнуто, оно называется каналом.  

Кровоснабжение ресничного тела осуществляется за счет двух длинных задних цилиарных артерий (ветви глазничной артерии), которые, проходя через склеру у заднего полюса глаза, идут затем в супрахориоидальном пространстве по меридиану 3 и 9 часов. Анастомозируют с разветвлениями передних и задних коротких ресничных артерий.  

Функции ресничного тела: вырабатывает внутриглазную жидкость (ресничные отростки и эпителий) и участвует в аккомодации (мышечная часть с ресничным пояском и хрусталиком).  

1.2 Хрусталик (Lens)

У взрослого человека хрусталик представляет собой прозрачное полутвердое бессосудистое тело в форме двояковыпуклой линзы диаметром от 9 до 10 мм и толщиной (в зависимости от аккомодации) от 3,6 до 5 мм.

 

Рис.7 Хрусталик взрослого человека (по Rabl С., 1889).

1 - вид спереди: заметны передние эмбриональные швы (передняя хрусталиковая звезда) и зубчатость экваториального края линзы;
2 - вид сбоку: различимы передние и задние эмбриональные швы и поперечная экваториальная исчерченность (место крепления к линзе ресничного пояска).

Радиус кривизны передней его поверхности в покое аккомодации равен 10 мм, задней - 6 мм (при максимальном напряжении аккомодации 5,33 мм и 5,33 соответственно). Поэтому в первом случае преломляющая сила хрусталика составляет в среднем 19,11 дптр, а во втором - 33,06 дптр (по Гулльстранду А.).

У новорожденных хрусталик почти шаровидный, имеет мягкую консистенцию и преломляющую силу до 35,0 дптр. Дальнейший рост его происходит, в основном, за счет увеличения диаметра.  

В глазу хрусталик находится сразу же за радужкой в углублении (fossa patellaris) на передней поверхности стекловидного тела. В этом положении он удерживается многочисленными волокнами, образующими в сумме подвешивающую связку (ресничный поясок)- zonula ciliaris. Эти волокна тянутся к экватору хрусталика от плоской части ресничного тела и его отростков. Частично перекрещиваясь, они вплетаются в капсулу хрусталика в 2 мм кпереди и 1 мм кзади от экватора, образуя Петитов канал и формируя зонулярную пластинку.  

Задняя поверхность хрусталика, также как и передняя, омывается водянистой влагой, так как почти на всем протяжении отделяется от стекловидного тела узкой щелью (ретролентальное пространство - spatium retrolentale). По наружному краю это пространство ограничивается кольцевидной связкой Вигера, которая фиксирует хрусталик к стекловидному телу.  

Гистологически в хрусталике выделяют капсулу (сумку), капсулярный эпителий и хрусталиковое вещество.  

Капсула хрусталика является типичной стекловидной оболочкой, Она бесструктурная и сильно преломляет свет, устойчива к воздействию различных патологических факторов. При разрезах края ее раны имеют тенденцию закручиваться кнаружи. Чисто условно, в интересах хирургии, в ней выделяют переднюю и заднюю части с границей в экваториальной зоне.  

Передняя часть капсулы толще задней (соответственно 0,008- 0,02 и 0,002-0,004 мм), что обусловлено нахождением под ней однослойного эпителия. Самые же толстые места капсулы находятся в двух концентричных экватору ее поясах - переднем (находится в 1 мм кнутри от места прикрепления передних зонулярных волокон) и заднем (кнутри от места заднего прикрепления ресничного пояска). Наиболее тонка капсула в области заднего полюса линзы и вокруг него.  

Пояс прикрепления к ней зонулярных волоконец, шириной до 2 мм, находится в области экватора, но сдвинут по отношению к его центру несколько кпереди. Это объясняется тем, что передние волокна зонулярного пояска заходят дальше на переднюю поверхность хрусталика, чем задние. Периферический же край последних граничит с местом прикрепления к капсуле связки Вигера. Наконец, следует указать, что ту часть капсулы, к которой крепятся зонулярные волокна, можно отщепить в виде очень тонкой пластинки, получившей название зонулярной (Berger, 1882).  

Эпителий хрусталика однослойный. Он выполняет несколько функций - трофическую, барьерную и камбиальную. В центральной зоне капсулы (область расширенного зрачка) клетки эпителия уплощены, плотно прилегают друг к другу и в них практически отсутствуют митозы. Периферийнее центральной зоны (за радужкой) размер эпителиальных клеток уменьшается, но они располагаются более густо, при этом число митозов несколько увеличивается. Наконец в области экватора клетки превращаются в призматические и волокнообразующие. Пространство между промежуточной зоной и волокнообразующим эпителием занимают клетки высокой митотической активности.  

Хрусталиковые волокна состоят как бы из двух порций, которые растут от экватора в двух противоположных направлениях - к полюсам линзы. Рост этот идет таким образом, что молодое хрусталиковое волокно оттесняет кнутри более старое, располагаясь между ним и капсулой. Поскольку по окружности экватора возникает огромное число таких волокон, то они в итоге образуют новый пласт хрусталикового вещества. Там, где растущие по различным меридианам волокна встречаются, формируются швы, имеющие у взрослого человека вид 9-12 лучевой звезды (см. рис.7).  

Формирование хрусталиковых волокон происходит в течение всей жизни человека. Поэтому объем хрусталика увеличивается. Однако этот процесс компенсируется за счет уплотнения центральных, более старых волокон. В результате объем и плотность ядра хрусталика все время увеличиваются: от небольшого и мягкого эмбрионального у новорожденного до четко обособленного у взрослого (к 20-30 годам), а затем и крупного, склерозированного и пожелтевшего (у стариков).  

Вещество хрусталика, за исключением центральной части, состоит из упомянутых выше меридиональных (радиальных) пластинок, которые располагаются возрастными слоями. В каждом слое у передней и задней поверхности хрусталика составляющие их волокна разделяются на секторы, связанные друг с другом швами. Они-то, как уже упоминалось выше, и образуют так называемую хрусталиковую звезду. Причем эта фигура последовательно повторяется в глубжележащих слоях хрусталика, но во все более простой форме. В конечном итоге она превращается в звезду из трех лучей - спереди в виде прямого, а сзади опрокинутого "Y", что хорошо видно при биомикроскопии хрусталика.  

Хрусталиковые волокна и их швы соединены между собой спаивающим веществом.  

Дыхание хрусталика осуществляется за счет процесса дегидрирования, т. е. отщепления дегидразой ионов водорода, которые затем присоединяются к какому-либо акцептору с его восстановлением. Эти два процесса протекают одновременно. Что же касается его питания, то оно реализуется путем обоюдных обменных процессов с камерной влагой.  

1.3 Анатомия аккомодационного аппарата

В состав основных анатомических элементов, обеспечивающих ак-комодационную функцию, входят (на рис.1) хрусталик(2), цинновы связки(9), цилиарный мускул(10), стекловидное тело(3), склера(6), глазодвигательные мышцы. Поскольку аккомодационная функция связана с изменением оптической системы глаза, то важно четко представлять саму оптическую систему и те исполнительные звенья, которые вызывают в ней соответствующую перестройку.  

Оптическая система глаза состоит из роговицы, жидкости передней камеры, хрусталика, стекловидного тела и приемной части - сетчатки. Роговица и хрусталик выполняют роль линз, между которыми размещается водянистая влага со своим показателем преломления. В соответствии с аккомодационной теорией Г. Гельмгольца (1856) переменным компонентом в оптической системе глаза является только хрусталик, а исполнительным элементом, под влиянием которого он изменяется, - цилиарное тело со своими мышечными волокнами.  

Сам хрусталик представляет собой двояковыпуклую линзу, передняя поверхность которого обращена в сторону передней камеры и тем самым смывается ее влагой, а задняя примыкает к стекловидному телу. При аккомодации изменяется преимущественно кривизна пе-редней поверхности хрусталика, так как она не встречает активного сопротивления со стороны передней камеры, заполненной водянистой влагой. Связь между хрусталиком и его исполнительным органом - цилиарным телом осуществляется через цинновы связки.   Цинновы связки к хрусталику крепятся по экваториальному кольцу в месте перехода его передней поверхности в заднюю через хрусталиковую сумку, а к цилиарному телу - со стороны цилиарных отростков (рис.2)  

 

Рис. 2. Схема крепления цинновых связок с хрусталиком

1 - цинновы связки;

2 - хрусталик;

3 - цилиарное тело  

Таким образом, хрусталик удерживается по всему кольцевому периметру цинковыми связками как бы на весу, что создает впечатление его неустойчивого положения. Тем более такая неустойчивость может вызвать большие сомнения в отношении центровки оптической системы глаза, в которой хрусталик является одним из основных ее компонентов. Однако надежность такой конструкции компенсируется наличием постоянного натяжения - тургора цинновых связок, создаваемого их реципрокным натяжением со стороны цилиарного мускула и хрусталика.  

Хрусталик за счет своей эластичности, направленной на его изменение в шаровидную форму, постоянно натягивает цинновы связки на себя, в то время как цилиарное тело при своем расслаблении натягивает их в свою сторону. В результате цинновы связки как бы растягиваются, что и приводит к их постоянному напряжению и упругости. Именно благодаря такому постоянному натяжению цинновых связок создается относительно устойчивое положение хрусталика, находящегося в подвешенном состоянии.   Мышцы глазного яблока, вид спереди

 

Сами же цинновы связки представляют собой стекловидные нити, тесно сплетенные между собой. При этом различают передние и задние волокна. Последние начинаются в области ora serrata, т.е. в том месте, где заканчивается граница оптической части сетчатки. В хрусталике они прикрепляются к его передней капсуле впереди экватора, образуя гомогенную пластинку zonula lamella. Передние волокна отходят от цилиарного тела у основания его цилиарных отростков и соединяются с капсулой хрусталика позади.  

При сокращении цилиарной мышцы, имеет место ослабление натяжения цинновых связок с ее стороны, которое тут же компенсируется натяжением со стороны хрусталика за счет его эластичных свойств. Образно выражаясь, взаимодействие между цилиарным телом и хрусталиком, связанными между собой цинновыми связками, можно представить в виде соревнующихся между собой в перетягивании каната двух лиц, каждое из которых натягивает его на себя. При малейшем ослаблении усилия со стороны одного из них канат натягивается с противоположной стороны. При этом сам канат, пока соревнуются между собой соперники, постоянно находится в натянутом состоянии. Нечто аналогичное имеет место и во взаимодействии цилиарного тела и хрусталика через цинновы связки. Причем их реципрокные силы формируются в цилиарном теле за счет изменения его тонуса, т.е. степени сокращения, а в хрусталике - его эластичных и упругих свойств.  

По современным представлениям в цилиарном теле выделяются три вида мышечных волокон (рис.3):

- меридиональные (мышца Брюкке),

- кольцевые (мышца Мюллера),

- радиальные (мышца Иванова) указывают на наличие четвертого вида

- мышцы Коллагена.

При этом меридиональные волокна идут параллельно склере, радиальная часть - перпендикулярно склере, а кольцевые волокна имеют циркулярное направление.

 

Рис.3. Схема цилиарного тела:

- роговица.

- радужка;

- corona eiliris с ее отростками;

- сосудистый слой цилиарного тела;

- склера;

- меридиональные мышечные волокна;

- радиальные волокна;

- мышца Мюллера;

- большой артериальный круг радужки;

- шлеммов канал;

- трабекулярный аппарат
Спереди мышечные волокна цилиарного тела имеют разные формы прикрепления: к эластичному сухожильному кольцу у корня радужки, непосредственно к склере, у волокнистого остова трабекулярной сети, куда эластичные сухожильные тяжи мышечных волокон поступают, пронизывая склеральную шпору, и, изгибаясь в форме арок, переходят в него в строме роговицы. С задней, противоположной стороны сухожильные отростки, а точнее - элементы стромы мышечных воло-кон цилиарной мышцы соединяются, видимо, с эластичной мембраной Бруха, доходя почти до заднего полюса глазного яблока.  

Таким образом, цилиарное тело представляет собой сопряжение разных видов мышечных волокон и его можно рассматривать как разновидность мультиэффекторного аппарата. Кстати заметим, что подобная анатомическая конструкция цилиарного тела не является исключением. По мультиэффекторному принципу построены скелетные и глазодвигательные мышцы, мышечная система век и другие в форме сопряжения быстрофазных соматических и медленнофазных парасимпатических мышечных волокон. В данном случае речь идет, видимо, об одном парасимпатическом виде, т.е. о глазных мышечных волокнах с разной функциональной направленностью.

Вместе с тем высказывается и другая точка зрения, согласно которой "разделение цилиарной мышцы на отдельные части является артефактом".

Установлено также, в частности на собаках, что при сокращении мышечных волокон цилиарного тела еговнутренняя часть перемещается в сторону оптической оси глаза. Это смещение при аккомодации они показали в виде схемы (рис. 4).

 

Рис.4. Смещение цилиарного тела при покое (а) и аккомодации (б):

- мышца Брюкке;

- хрусталик;

- цилиарное тело
У человека при аккомодации, сопровождающейся сокращением цилиарной мышцы, происходит ее укорачивание в меридиональном направлении с одновременным смещением впереди и внутри, в сторону оптической оси глаза (С.Л. Шаповалов, 1977).  

3. Болезни глаз

3.1 Близорукость

Близорукость (миопия) - большей частью наследственно обусловленное заболевание, когда в период интенсивной зрительной нагрузки (учебы в школе, институте) вследствие слабости цилиарной мышцы, нарушения кровообращения в глазу происходит растяжение плотной оболочки глазного яблока (склеры) в переднезаднем направлении. Глаз вместо шаровидной приобретает форму эллипсоида. Вследствие такого удлинения продольной оси глаза изображения предметов фокусируется не на самой сетчатке, а перед ней, и человек стремится все приблизить к глазам, пользуется очками с рассеивающими ("минусовыми") линзами для уменьшения преломляющей силы хрусталика. Близорукость неприятна не тем, что требует ношения очков, а тем, что при прогрессировании заболевания возникают дистрофические очаги в оболочках глаза, приводящие к необратимой, не корригируемой очками потере зрения. Чтобы этого не допустить, нужно соединить опыт и знания врача-окулиста с настойчивостью и волей пациента в вопросах рационального распределения зрительной нагрузки, периодического самоконтроля за состоянием своих зрительных функций.

 

 

3.2 Дальнозоркость

В отличие от близорукости, это не приобретенное, а врожденное состояние - особенность строения глазного яблока: это либо короткий глаз, либо глаз со слабой оптикой. Лучи при этом состоянии собираются за сетчаткой. Для того, чтобы такой глаз хорошо видел, перед ним нужно поместить собирающие - "плюсовые" очки. Это состояние может долго "скрываться" и проявиться в 20-30 лет и более позднем возрасте; все зависит от резервов глаза и степени дальнозоркости.

Правильный режим зрительного труда и систематические тренировки зрения позволят значительно отодвинуть срок проявления дальнозоркости и пользования очками. Пресбиопия (возрастная дальнозоркость). С возрастом сила аккомодации постепенно падает, за счет уменьшения эластичности хрусталика и цилиарной мышцы. Наступает состояние, когда мышца уже неспособна к максимальному сокращению, а хрусталик, потеряв эластичность, не может принять максимально шаровидную форму - в результате человек теряет возможность различать мелкие, близко расположенные предметы, стремится отодвинуть книгу или газету от глаз (чтобы облегчить работу цилиарных мышц). Для коррекции этого состояния назначаются очки для близи с "плюсовыми" стеклами. При систематическом соблюдении режима зрительного труда, активном занятии тренировкой глаз можно значительно отодвинуть время пользования очками для близи на многие годы.

3.3 Астигматизм

Астигматизм - особый вид оптического строения глаза. Явление это врожденного или, большей частью приобретенного характера. Обусловлен астигматизм чаще всего неправильностью кривизны роговицы; передняя поверхность ее при астигматизме представляет собой не поверхность шара, где все радиусы равны, а отрезок вращающегося эллипсоида, где каждый радиус имеет свою длину. Поэтому каждый меридиан имеет особое преломление, отличающееся от рядом лежащего меридиана. Признаки болезни могут быть связаны с понижением зрения как вдаль, так и вблизь, снижением зрительной работоспособности, быстрой утомляемостью и болезненными ощущениями при работе на близком расстоянии.
    Итак, мы видим, что наш зрительный анализатор, наши глаза - это исключительно сложный и удивительный дар природы. Весьма упрощенно можно сказать, что глаз человека - это, в конечном счете, прибор для приема и переработке световой информации и его ближайшим техническим аналогом является цифровая видеокамера. Относитесь к своим глазам бережно и внимательно, так же бережно, как Вы относитесь к своим дорогим фото- и видеоустройствам! Как вовремя и как можно раньше распознать различные расстройства функционирования органа зрения? Как защитить свои глаза от перегрузки и предупредить развитие заболеваний глаз?

  Главное - научиться систематически самостоятельно контролировать состояние своих зрительных функций.

 

 

Список использованной литературы

 

Королева А.Г. “Анатомия глаза”, Рязань, 2004 г.

Потапов Д.О. “Офтальмология”, М., 2005.

[/sms]

19 сен 2008, 10:01
Читайте также
Информация
Комментировать статьи на сайте возможно только в течении 100 дней со дня публикации.